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Absfraet. Effective dynamic equations describing weakly non-linear exchgwmgmetostatic 
excimions are derived for the antiferromagnetic film with an ‘easy-plane’ anisotropy. The 
existence of ’algebraic’ solitons has been predicted. The conditions for the excitation of soliton 
states are~investigated for various values of magnetic field perpendicular to the surface of the 
film and film thickness. The soliton relaxation is discussed. 

1. Introduction 

Interest in mc ncn-linear properties of antiferromagnetic films has arisen quite recently. 
It is caused by two circumstances: the fundamental physical features of these materials, 
and possible technical applications [1,2]. The peculiarities of propagation of the activation 
mode in an antiferromagnet were studied in [3]. In the present report the interaction of zero- 
gap exchangemagnetostatic spin waves in an antiferromagnetic film with an ‘easy-plane’ 
anisotropy is investigated. 

The problem is significantly complicated when the magnetostatic interaction is taken into 
account even for waves propagating along one assigned direction. The problem becomes 
not only three dimensional but also non-local. We have deduced a set of coupled equations 
which describes weakly non-linear non-local dynamics of zero-gap spin waves and discussed 
the condition necessary for soliton existence in an antiferromagnetic thin film. 

2. Problem formulation 

Consider an antiferromagnetic thin film with an ‘easy-plane’ anisotropy. The constant 
magnetic field and anisotropy axis are directed along the z axis which is perpendicular 
to the surface of the film. It is convenient to use the following parametrization for the 
magnetization vectors of sublattices: 

Mi = M0[cos0icos~j,cos0isin~~,sin0~] i = 1.2 

where MO is the saturation magnetization. The energy density can be written in terms of 
independent variables Si and (oi 141: 

w = W I  i w 1  

wI = M , ~ ~ ( C U ~ [ ( ~ ~ . Q ~ ) ~  + ( a i w 2  + c o s 2 e I ( a i d  + cos2 e 2 ( a i ~ 2 ) 2 ~  

+ 2a2[ai01 aiOz(sin o1 sin02 cos qi +cos 8, COS 6) + &ql ai% COS 01 COS 6 COS qi 
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- ai8lai(~2sinB1 cos&sin@ 3. a;&&pI cos81 sin&sin@] 
+26(cos81 cos 82 cos@+sin81 sin&)+PI (sin& -sin8~)~-~2(sin01+sin 82)' 

- Z(sin81 + sin82)h) (1) 

wz = -Mt/2[ [cos 01 cos pl + cos 8, cos rp2]h$'" +  COS^, sin 1 1  + cos 8, sin(P2lhP' 

+ (sin81 + sin8z)hF'} (2) 

where ai = a/n;, 011. a2 and 6 are the exchange interaction constants (011. 012 and 6 describe 
non-uniform and uniform exchange interactions, respectively), ,61 and ,62 are the magnetic 
aniso@opy constants (PI > 0 for an antiferromagnet with 'easy-plane' anisotropy), H i s  the 
external magnetic field, h = H/Mo.  h") = H")/Mo, @ = p1 - a. Note that H("') is 
the field defined by the equations of magnetostatics: 

(3) - AV + 4 H  diV(M1f M2) = 0 

A@ = 0 $"'l = -V@ (4) 

H") = -Vp 

where p and @ are magnetic scalar potentials inside and outside the slab, respectively. 
The ground state of the system is determined by the energy minimum conditions 

J ( a ~ / a 8 ~ ) d r  = j'(aw/api)dr = 0. As a result the equilibrium values of the angles 
are defined by 

(5) pop - 9: = H 8; = 8: = 8' sine' = h/2(6 + 4H - Pz) .  

In the case considered, the equations describing the dynamics of non-linear excitations can 
be written by the Lagrange function with the density 

L = (M0/g)(sin81a,p1 + s i n 8 ~ a ~ ~ )  - w (6) 

where a, = a/at and g is the magnetomechanical ratio. The system of these equations takes 
the following form: 

a ~ / a e ;  - aj[a~/a(ajsi)l - awZ/ae, = o 
a ~ / a p ~  - a,[a~/a(a ,p~)i  - aj[a~/a(ajqi)i - awz/ap; = o (7) 

The presence of additional terms awz/a8i and aw2/a(pi in (7) means that the field Hem) is 
not independent and defined by resulting magnetization M = MI + Mz. Consequently, in 
varying the Lagrangian in fields 0; and pi the variations in the field H(m) should be taken 
into account. Thereby the relation [4] is fulfilled: 

i = i,z. 

where the integration is performed over a crystal volume. The boundary conditions in the 
case of free spins at the surface of the slab are defined by the relations 

Here d is the slab thickness. 
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3. Effective equations of motion and their solutions 

The main task of our paper is to derive the effective evolution equations for weakly non- 
linear exchangemagnetostatic waves on the basis of the complete macroscopic equations 
(3), (4) and (7) with the boundary conditions (8). For definiteness, assume that the waves 
propagate along the x axis. The problem involves two characteristic space scales: the slab 
thickness d and the size A of the magnetic inhomogeneity (of the soliton). We shall deal 
with the weakly non- linear^ waves under the following conditions: 

A >>~max((a + c ~ " t a n ~ 8 ~ ) / 2 n d ,  d ]  

d/SA << [h/2(S +4n - j32)I2 << 1. 

Here a = (a1 + az)/2 and a" = (al - a2)/Z.  It can be shown that the spin-wave spectrum 
of an antiferromagnet with 'easy-plane' anisotropy has two branches: the activation branch 
and zero-gap (Goldstone) branch. We are interested only in the Goldstone exchange- 
magnetostatic mode. The dispersion relation in the given range of magnetic fields and 
space-time scales is 

U'= ( Z ~ M O ) ~ ~ ' ' ~ ~ C O S * ~ ~ ( ~ + ~ ~  -& -2nd lkx l ) .  (11) 

Note that the demagnetizing fields which determine the magnetostatic part of the spin- 
wave spectrum can be estimated using the convenient method proposed in [5]. To derive 
the effective evolution equations for Goldstone modes, we shall use a version of the 
reductive perturbation theory based on coordinate stretching 161. The forms of the scale 
transformations in the reductive perturbation theory are different inside and outside the film. 
We shall look for the solution of (3). (7) and (8) inside the slab in the form 

s = 2Mog~0~8~[01"(6 + 4~ - j32]1'2 

Here E is the small parameter characterizing the deviation of the system from the equilibrium 
state d c0t8~/SA - Si -Bo - O(E) << 1. The scale transformations are introduced to match 
the space-time response of the system to dispersion law (1 1) and to obtain a balance between 
the dispersion and quadratic non-linearity. Outside the film we look for the solution of the 
magnetostatic equation (4) in the form 

m 

6 = 6(q, z, 5 )  + C E ~ @ ( ~ ) ( ~ ,  z, ?) . q = x +st t =E%.  (13) 

The effective equations for the Goldstone excitations are obtained as a result of the 
combination of two versions of the perturbation theory at the boundary of the film. A similar 
approach was used earlier in order to describe the propagation of the waves in a stratified 
fluid [7]. Note that each order of the perturbation theory involves terms depending on the 
z coordinate. The successful application of the method above is based on the opportunity 

n=1 
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of separating the variables e and z (or q and z) in the equations of the perturbation theory. 
A set of equations of perturbation theory is solved sequentially, beginning with the lowest 
order of E .  The comesponding boundary conditions can be obtained from the expansion of 
the conditions (8) in a power series of E. It is important that the conditions 
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(fl) aze,!")io.d = azpi = o (i = 1 ,2 )  

give rise in the lowest order of E to the z-independent functions: pjo), @), 0:' (i = 1.2); #'+$', (n = 2.3); 0?)+0f). This simplifies the problem considerably; however, it is not 
of fundamental importance as the method used is applicable to more complicated boundary 
conditions. The zero and first order in the parameter E perturbation theory equations have 
the following solutions: 

plo)(i, Z) = x +$)(i, r )  

$0) = 

e, (1) - - ,gm = y a  epf") y = [Or'" + 4s - 82)1"2 

(14) 
p(O) = SaMo sineO(z - d / 2 )  0 Q z < d 

4s Mod sin eo z > d  
-4irM0d sin eo z Q 0. 

The magnetostatic potential outside the slab is determined by solving the Dirichlet problem. 
In particular, we have in the z > d range 

The boundary conditions express the continuity of the potential at the boundary between 
two media. The solution of the boundary problem (15) takes the form 

and as a result we have at z = d 

Here 2 is the Hilbert transformation: 

The symbol P denotes the principal-value integral. Equation (17) should be used for 
formulation of the boundary condition at z = d in calculating the magnetostatic potential 
p(I) inside the slab. Inasmuch as inside the slab the variable = &q is employed, the 
limiting value of the derivative should be expressed in terms of e. From (15) and (17) the 
following expression for the limiting value of the derivative &$')Id in terms of p(I), 6 is 
obtained. 

QZ(')Id = EI?+~(')($', z = d )  = O(E). (18) 
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Similarly, we have for z = 0 

(19) 
~~ az@(')lo = -&Aa$rp(y{ ' ,  z = 0) = az@(l)ld = O(&). 

Equations (18) and (19) show that the limiting values of the derivative a,@(')IO,d belong to 
the second-order term of reductive perturbation theory in E. The magnetostatic potential 
within the slab is determined by a simpler way in the first order of~the perturbation theory 
in E: 

a;p(') = 0 (0 < z < d)  

[-aZp(l) + 8 n ~ ~ c o s e ~ e , ( ' ) ( t ,  r1110.d = 0. 

The solution has the form p(') = 8xMo cos e0e,'"({, r)(z -d/Z). The analysis of the high- 
order equations is performed similarly. The calculation of the second-order magnetostatic 
potentials (o(" inside the film reduces to the solution of the following boundary value 
problem: 

a:p(2) = o o < G d 

- az@(l)io,d = ~-a,p(~) + 4 n ~ ~ ( c o s e ~  (e?) +e:)) - sine0e~)2)~10,d. 
(20) 

The solution of, equation (20) is trivial because the functions e(') and Of) + 6;) are z 
independent. As a result the second order and third order of the perturbation theory give 
the effective equation for the function e,(')({, 5) :  

which coincides with the Benjamin-Ono equation. The Benjamin-Ono model admits the 
multi-soliton excitations 18.91 and can be investigated in detail using the inverse scattering 
method [IO, 111. 

4. Analysis of soliton solutions 

The magnetostatic soliton is less localized in comparison with the solitons of exchange and 
exchangerelativistic origin. On the contrary the onesoliton solution of equation (21) is 
described by the 'algebraic' wave rather than by the exponential wave: 

where U is the positive real parameter. In terms of the initial variables (x ,  t )  the soliton 
(22) corresponds to the localized excitation propagating at the velocity U + s. Note that the 
soliton amplitude is proportional to the excess of its velocity above the phase velocity of 
the spin wave. The solitons arise probably in a threshold way as a result of the increase 
in the amplitude of exchange-magnetostatic spin waves and are realized only in dynamics. 
The system tends to reduce its energy by radiation of solitons. The size of the soliton must 
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exceed the thickness of a slab (see (9)). This requirement bounds the interval of the values 
of the parameter U: u/s  - d(A6)-' << 1. 

Equation (21) describes the dynamics of the Lagangian system. With the help of 
equations (14)-(20) it can be shown that, in the approximation considered, the total 
expression (6) for the Lagrange function density is reduced to the effective formula 
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(23) L , ~  = c[;atxa,x - zvaSxa&aSnx 1 + $q(a,xPi. 

Here c =~4Moa2(gy)-' cosOo, a is lattice constant and we have introduced the potential 
6'tx = 8:" instead of the field 6';). The variation in the action corresponding to Ler with 
respect to the field x gives equation (21). Equation (23) allows one to obtain the expressions 
for the integrals of motion, namely for the energy E and field momentum P: 

Substituting the solution (22) into (24) we obtain 

E = dir~aA-'Mocos8° P = ir(~a)2Mococos80(gyA)-1. (25) 

Let us note that the relations obtained ?e related. to the coordinate system moving with the 
velocity s. The dispersion law of the spin waves in this reference system has the form 

n(k) = o ( k )  - ks = 2i rdyMog~0~0~lk lk .  (26) 

Equations (25) and (26) allow one to interpret the soliton (22) as a complex consisting of 
N non-interacting magnons with the wavevectors k = (2A)-'. Here 2A is the parameter 
characterizing the soliton width. The number N is defined by the formula 

N = Z(Ua)2Mo COS6'o(ypB)-' - ir[8ird(3ah)-'I2 >> 1 (27) 

where pg is the Bohr magneton. If we take into consideration that g = 2 p ~ / f ,  equation 
(U) can be rewritten in the form 

P = Nhk E = Nhn(k) k = (2A)-' (28) 

where n(k) coincides with the dispersion law of the spin wave (26), k > 0. The soliton 
energy E can be written in the following form: 

E = Pz /2Merr. (29) 

This allows one to interpret the soliton as an object similar to the particle with effective 
mass 

M,E = Nmo (30) 

where mo = A(4rrdyMocosB0)-' is the effective mass of a single magnon with the 
dispersion law (26). The result obtained is typical for the 'algebraic' soliton since its energy, 
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momentum and mass are the sums of N corresponding quantities for a single magnon. 
However, in the present problem, N is not a free physical parameter, as the velocity U or 
momentum P is. It is defined by external conditions, namely the slab thickness d and~the 
magnitude of the external magnetic field h. From this point of view the soliton energy 
depends only on its momentum P and is, by a factor of N, smaller than the magnon energy 
with the same momentum. We believe that the integrability of the model (21) assures the 
stability of the soliton (22); The multi-soliton solutions of (21) describe the elastic collisions 
between these ‘algebraic’ solitons. 

The examination of the role of dissipation is an important problem in soliton physics. 
The calculation of the relaxation rate  for the spin waves due to the exchange interaction 
leads to the following expression: r = pk2 (p =.constant > 0) [12]. In the case under 
consideration the relaxation can be taken into account in a phenomenological manner by 
adding the term -pLa$‘F) on the left-hand side of equation (21): 

It is remarkable that the obtained equation (21a) admits a wide class of exact solutions 
[13,14]. The simplest of these has the form 

e:’) =~-uI[P +B(~)J’  + A~(T)I-’IAW + MV[P +POWJI  
( 2 2 ~ )  

$(r) = (u/p)rA(r) , -  601 A(r)  = (2pr + 6i}”z SO > 0. 

Here 60 is the problem parameter. In the p + 0 limit this solution reduces to (22). From 
equation (222) it follows that the locilized excitation becomes blurred in time and extends 
in width, while the amplitude and velocity are diminished. 

5. Results and discussion 

It is known that the magnetic state of antifemomagnets is described by a two-vector order 
parameter, namely the ferromagnetism vector M = M I  + MZ and antiferromagnetism 
vector L = MI - M2. In terms of 8,’“ and pf“’ they take the form 

M = 2M0(0; 0; sine’ + cosO08/” + O(&) 

L = ~ ~ ~ ( c o s ~ ~ c o s p ~ ~ ;  coseosin@); 0) + o(E). 
(31) 

From (31) it follows that the dynamic changes in L take place in zero order in  E and the 
dynamic changes in M appear in the first order of ‘magnitude in E .  In the localization 
region of a soliton the component M3 is smaller than at infinity; so M3 describes ‘a ‘dark’ 
soliton. The depth of this minimum is proportional to the parameter U. In correspondence 
to (14), is defined by the expression 

@) = -(u/y)tan-’[(f + ur)/A]. (32) 

According to (31) and (32) the vector L lies in the plane of the slab beink turned~ . .  by an 
angle AV!’) in the region of localization of a ,soliton: 

. .  

ApY’ = (zuJy) - (8rr2d/3ah) >> rr 
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i.e. completing many revolutions. 
It can be shown that in weak magnetic fields (h/26 < 0;’’) the effective equations 

differ from (21) and have no solutions of the ‘algebraic’ soliton type. In this interval of the 
parameter values the interaction of Goldstone modes is less intensive and defined by the 
cubic (rather than quadratic as in (21)) term in the field 0:”’ in an effective equation. 
It is of interest that in the infinite antiferromagnet the dynamics of non-linear small- 
amplitude waves are described by local equations of the Korteveg-de Vries type. These 
equations have different forms depending on the magnetic field magnitude and wavevector 
direction. Certainly in the case of a thick film, ‘exponential’ solitons are realized rather than 
‘algebraic’ solitons. The reason is that in the infinite sample the magnetostatic interaction 
contribution is of secondary importance in comparison with the short-range exchange 
interaction con@ibution. In contrast, in a thin film the long-range dipolsdipole forces 
dominate and the surface magnetic charges form in principle the ‘algebraic’ solitons. Other 
magnetic charges, e.g. volume charges, refine only the internal smcture of solitary waves. 
The model considered above is sufficiently simple and consistent with real antiferromagnets. 
The specific evaluations can be performed using the material parameters for MnC03 (N6el 
point TN = 325 K), a-F@03 with TN = 950 K having an ‘easy-plane’ anisotropy above 
the Morin point TM = 260 K, and FeBO3 with TN = 348 K. In these systems it is easy 
to realize the conditions (9) and (IO) when d N 5-10 Wm. Let us evaluate the parameter 
U for FeB03. Considering that for this material S = 16 and MO = 1040 Oe, we obtain 
U < 10’ cm s-’ under conditions (10). The effective soliton velocity v + s  is thereby proved 
to be sufficiently high, i.e. of the order of l@-lOs m s-‘ and is close to the value of the 
velocity of sound propagation in these materials. Evidently, the presence of magnetostatic 
solitons can be revealed through their resonance interaction with the elastic subsystem of the 
antiferromagnet. We believe that the approach outlined allows one to approximate correctly 
the weakly non-linear dynamics of quasi-one-dimensional waves in magnetic films. 
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